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ABSTRACT 

Using techniques of Algebraic Geometry, the aim of this paper is to give 

a generalized definition of the Contou-Carr~re symbol as a morphism of 

schemes. In fact, from formal schemes and Heisenberg groups, we provide 

a new definition of the Contou-Carr~re symbol and a generalization of it 

associated with a separable extension k ¢-~ k(s). Moreover, a reciprocity 

law is proved and classical explicit reciprocity laws are recovered from it. 

1. I n t r o d u c t i o n  

Given a complete curve C over an algebraically closed field and a closed point 

p E C, in 1959 J. P. Serre [14] defined the multiplicative local symbol as 

5( ( f ,g)p  = ( -1 )  n'm p) with n = Vp(g), m = vp(f) .  

A few years later, in 1971, J. Milnor [10] defined the tame symbol dv associated 

with a discrete valuation v on a field F.  Explicitly, if A~ is the valuation ring, 

pv is the unique maximal ideal and k~ = A~/pv is the residue class field, Milnor 

defined d~: F* x F* ~ k~ by 

dr(z ,  y) = ( - 1  ~v(z)'v(y) xv!y) fmod~ J yV(Z) ~ ~vj. 
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This definition generalizes Serre's definition of the multiplicative local symbol 

and J. Milnor proved that the tame symbol is a continuous Steinberg symbol. 

During the last 30 years, the tame symbol has been used in Algebraic K-Theory 

to study the group K2F. 

The analytic construction of the tame symbol was found in 1979 by P. Deligne 

as a morphism in the derived category of the category of sheaves of abelian 

groups over a Riemann surface, and also independently by A. Beilinson [4]. 

Deligne's article [8] was published in 1991. Moreover, in 1994 C. Contou-Carr~re 

[7] defined a functor from the category of formal noetherian schemes to the 

category of groups, which allowed him to give a generalization of the tame 

symbol as a morphism of functors. 

Recently, G. W. Anderson and the author have proved a reciprocity law for 

the Contou-Carr~re symbol [1], using a similar method to Tate's proof of the 

residue theorem [15] and the proof of E. Arbarello, C. de Concini and V. G. Kac 

of the reciprocity law of the tame symbol for a complete curve [2]. 

Furthermore, A. Beilinson, S. Btoch and H. Esnault [6] have found a construc- 

tion of the Contou-Carr~re symbol as the commutator pairing in a Heisenberg 

super extension, and from this definition they have obtained another proof of 

the reciprocity law for this symbol. 

Using techniques of Algebraic Geometry, the goal of this paper is to give a 

generalized definition of the Contou-Carr~re symbol as a morphism of schemes. 

Indeed, we provide a new definition of the Contou-Carr~re symbol and a gen- 

eralization of it associated with a separable extension k ¢-+ k(s). Our definition 

coincides with the expression given by C. Contou-Carr~re by considering S- 

valued points, S being a connected k-scheme. 

As far as we know our characterization of the Contou-Carr~re symbol, defined 

from duality morphisms of groups schemes, and the provided generalization of it, 

including a generalized reciprocity law, are not stated explicitly in the literature. 

The organization of the paper is as follows: 

In Section 2, the formal k-scheme F is introduced, where k is an arbitrary 

field. This section also briefly introduces generalized Witt rings, in order to 

determine the duality between the group schemes F+ and F_. 

Section 3 deals with the main results of this paper. Namely, we define a 

Heisenberg group, 7-/(F), associated with the formal scheme F and give a defini- 

tion of the Contou-Carr~re symbol as a morphism of schemes from the commuta- 

tor of the group extension induced by 7/(F). This morphism, ( , ) k :  F x F -~ Gm, 

is characterized as a differentiated element in the cohomology class [eT.t(~) ] E 
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Hreg(F, C r m ) , 2  - e~t(~ ) being the commutator referred to above. Using a similar 

method, we provide a generalization of this symbol associated with a separable 

extension k ~ k(s). 

Finally, Section 4 is devoted to proving a reciprocity law for the generalized 

Contou-Carr~re symbol defined in Section 3 that  is valid for complete algebraic 

curves over a perfect field and to recovering classical explicit reciprocity laws 

from it. 

For a detailed study of formal groups and Witt  rings, the reader is referred 

to [9]. 

2. Prel iminaries  

2.A. FORMAL k-SCHEME F. Let k be an arbitrary field. First, we shall recall 

the definition of the formal group F (for a complete study see [3]). 

F is defined as the formal group scheme F_ ×Gm × F+ over Spec k, where 

F_ is the formal scheme representing the functor on groups: 

S -~ F_(S) = where ai E H°(S, Os) are , 
nilpotents and n is arbitrary 

Gm is the multiplicative group, and the scheme F+ represents 

{ series l + alz + a2z2 + ''" } 
S ~ F+(S) = where ai E H°(S, Os) " 

The group laws of F_ and F+ are those induced by the multiplication of 

series. Let us now denote by F the formal group scheme Z ,  × F over Speck, 

where Z ,  = ]-Iacz Spec k. 
For each locally noetherian k-scheme S one has that  

Z.*(S) = MaPcont.(S, Z), 

considering Z as a discrete topological space. Moreover, the above equality 

determines a structure of group scheme on Z.,  which coincides with the group 

structure of Z when we consider its rational points. 

Furthermore, if S is a connected k-scheme, we have that  

F ' ( S )  = (H°(S, Os)[[z]][z-1]) *, 

and hence F°(Spec k) = (k[[z]][z-1]) * = (k[[z]])~. 
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2 . B .  GENERALIZED W I T T  RINGS. Let us consider a vector with infinite vari- 

ables, x = (Xl, x2 , . . . ,  xn , . . . ) ,  and, for each n E N, let wn(x) be the polynomial 

Wn(X) : E dxdld" 
din 

Then, given the vectors x = (xi) and y = (yj), one can define the series of 

polynomials E = (Ei(x, y)) and II = (IIj(x, y)) by the equations 

=  n(X) + a n d  = 

Dellnition 2.1: Given a ring A --commutat ive  and with unit e lement--  one 

defines a generalized Witt  ring, W(A), to be the set of infinite sequences a -- 

(al, a2 , . . . ) ,  with ai E A, together with the ring operations 

(al, a : , . . . )  + (bl, b2,. . .)  = (El (a, b), E2 (a.b), . . .) ,  

(al, a2 , . . . ) "  (bl, b2,. . .)  = (H1 (a, b), H2(a, b), . . . ) .  

With this definition, W(A) is commutative and with unit element ring ([9], 

page 117). 

We now denote by W+ (A) the abelian group induced by the structure of a 

generalized Witt  ring. 

Let ~1, ~2,...; ~1, ~2,. . .  be indeterminates. We define the sequences 2 = (~i) 
and ~ = (~j) by the equations 

I I ( 1 - ~ i t ) = l + 2 1 t + 2 2 t  2 + . . .  and H ( 1 - ~ t ) = l + ~ l t + y e t  2 + . . . .  
i i 

Hence, from these definitions we can construct a polynomial sequence P1, P2, . .  • 

satisfying the relations 

H ( 1  - ~ j t )  = 1 + P i t  + P2t 2 + ' " .  
i,j 

Bearing in mind the fundamental theorem of symmetric functions, Pj can be 

written as Pj(21, . . .  , x j ; y l , . . .  ,~j). 

Thus, we can define on the multiplicative group 

A ( A )  = { 1 +  alt  + a2t 2 + . . . , a i  E A} c_ A[[t]] 

a second operation by means of the formula 

( 1 +  alt  + a2t 2 + . . . )  * ( 1 +  blt + b2t 2 + . . . )  = 1 + Pl(a,b)t  + P2(a,b)t 2 + . . .  
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such that (A(A), ", *) is a ring. 

Moreover, with the previous notations we can define a map 

EA: W(A) A(A) 
l-I(1- air'), 
i> l  

which is an isomorphism of rings because EA(a + b) = EA(a).  EA(b) and 

EA(a. b) = EA(a) * EA(b). 

Remark 2.2: Note that the map EA is the generalization to arbitrary charac- 

teristic of the exponential map and that the sum in W(A) is analogous to the 

group operation induced by the Campbell-Hausdorff formula. 

Let W__°: Csch./k > Crings be the contravariant functor defined as 

____W'(S) = W(H°(S,  Os)), 

and let us denote by W~_ the induced functor on the category of abelian groups. 

It is clear that  the above exponential gives an isomorphism of functors on 

groups _~ . 

Furthermore, for each ring B we can define the abelian group 

V~'+ ( B ) =  { ( b l , b 2 , . . . ) 6  W + ( B ) w i t h  bi nilpotent } 
for all i and bi = 0 for ahnost all i " 

Analogously to the above case, we have that VC+(H°(S, Os)) ~- F ' ( S ) ,  from 
which we obtain the existence of an isomorphism of functors on groups 

^ • 

W+ _~ r!. 

2 . C .  DUALITY BETWEEN THE GROUP SCHEMES F +  AND F _ .  If Y is a g roup  

scheme over a field k, we define its functor of Cartier characters, x (Y) ' ,  as 

x(Y) ' (S)  = Homs-g~oups(Ys, (Gin)s), 

S being a k-scheme and Gm being the multiplicative group scheme. 

With the previous notations, for each k-scheme S we can establish a functorial 

map 

defined by 

<, >: × w (s) 

(a, b) = EHo(s, os)(a, b; 1), 
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where EA(X; t) := EA(x)[t], a • ~]+ (H°(S, Os) and b • W+ (H°(S, Os). 
For each ring B, one has that 

~,Y+ (B) : HomB-groups( (W+ )s, Gm,S ) 

([9], page 500), and hence *W_+(S) _~ x(F+)°(S). Thus, X(F+) ° is representable 
by a formal group scheme, X(F+) -~ F_, and, in arbitrary characteristic, the 
universal character determines a natural morphism of schemes 

Moreover, since 

X: F+ x F_ --+ Gm 

(f,g)' > xg(f)" 

W+ (B) = HomB-gro~ps ((W+)B, Gm,B ), 

the functor X(F-)" is also representable; its representant is F+ and the universal 
character is the above one. Accordingly, the groups F+ and F_ are autodual. 

Remark 2.3: If S is a connected k-scheme, f = 1-Ii~1(1 - aiz i) • F~_(S) and 
g • 1-Ijhl (1 - b _ j z  -j) • F'_ (S), where b_j are nilpotent elements of H°(S, Os), 
one has that 

xg(f) : EHo(S,Os)(a" b; I) = H(I - (a. b){) 
i>_~ 

oo h 

- a {  b_j ) • G~(S), = H i : , H j = , ( 1  j/(<j) i/(i,j)(i,j) HO(S, Os), = 

where, finitely, many of the terms appearing in the products differ from 1. 

PROPOSITION 2.4: If char(k) = 0, f(t) • F~_(S) and g(t) • F'_(S), one has 
that 

Proob Given an element h(t) 6 A[[t]][t -1] we set 

6m(h(t)) : res(tm(d-~)) (m • Z). 

Then, if f(t) = 1 + E{>_I a{ t{ and g(t) : 1 + EN=I bit-J, such that 

f ( t)= H ( 1 -  ~ i t i ) :exp ( E  ait i)  and g(t)= H ( 1 - b j t - J ) = e x p ( E " b j t - J ) ,  
i_>l \ i_>l " j > l  j > l  " 
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we have the relations 

~di-  -wi (~)  _ 15i( f ( t ) )  and bj - -wj (b)  1 - j~ j (g ( t ) ) ,  
i j 

and hence 

~((f(t) ,g(t)) = EHo(S,Os)(~t" b; 1) = I I ( 1  - (0 , .  b)i) 
i>1 

Remark 2.5: Given the group scheme F, let 

0 -"+ Gm ----~ P -"~ F -"+ 0 

be the extension of groups defined by the automorphisms of the determinant 

bundle over an infinite Grassmannian ([3], page 23). If e: F x F --+ G,~ is 

the commutator of this extension, one has that elr+xr_ coincides with the 

above character. Moreover, a similar expression to the statement of the above 

proposition is obtained in ([13], page 22). 

3. Genera l ized definit ion of  the  Con tou-Car rh re  symbo l  

2.A. DEFINITION OF THE CONTOU-CARRERE SYMBOL ASSOCIATED WITH A 

FIELD k. It is known that the group schemes Z,  and Gm are autodual and 

their universal character is the group morphism 

z ' ( s )  x G t (s )  - ~  c - ( s )  

(~,,~),  ) ,~- 

for each connected k-scheme S. 

Thus, from the duality between the group schemes F+ and F_, if we set 

Ko =Gm x F+, we have tha t / (0  = Z,  x F _ , / ( o  being the Cartier dual of the 

group scheme Ko. 
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Definition 3.1: We shall use the term Heisenberg group scheme associated with 

F, denoting this by 7-/(F), to refer to the scheme 

~(~) = c~ x A'o x/~o 

together with the group law 

(a, x, l).  (a', x', l') = (a . a' . l (x ') ,  x . x ' ,  1. l') 

for S-valued points, S being a k-scheme. 

If en(~) (x, y) is the commutator of H(F), and since F ~ x(F), the map 

~: ~ > ~(~) 

x ,  > eu(F)(z ,  ) 

is an isomorphism of groups, because if x = (a, b) E K0 x / (0 ,  then ~o(a, b) = 
(a -1 , b). 

Thus, 7-/(F) satisfies the characterization as a Heisenberg group of an exten- 

sion by the multiplicative group ([11], page 2). 

Moreover, since en(F): F x F --+ Gm is a 2-cocycle, it determines an element 

of the cohomology group H~eg.(F, Gm). This group contains the classes of 2- 

cocycles that are morphisms of schemes. We shall now give a definition of the 

Contou-Carr~re symbol as a morphism of schemes from this cohomology class. 

LEMMA 3.2: There exists a unique 2-coboundary c: Z,  x Z,  -+ G m satis[ying 

the conditions: 

• c((~, # + 7) = c(~, # ) .  c(~, 7) 
• c (a , (~)  = ( - 1 ) "  

for a, #, 7 E Z**(S), with S a connected k-scheme. 

Proo/': Recall that a 2-cocycle c: Z ,  × Z ,  ~ Gm is a 2-coboundary when there 

exists a morphism of schemes #3: Z,  -+ Gm such that 

c(~, #) = ¢(~ + #). V~(~)-I" ¢(~)-1. 

Then, since Z .  = lI~e z Spec k, the morphism ¢ is determined by a sequence 

(A~)~,Ez, with ¢(a)  = Aa E k*. It follows from the conditions of the lemma 

that 
h a  = (--1)a((~-1)/2~ for all c~ E Z. 

Hence, c(a, #) = (-1)a.# is the unique 2-coboundary that satisfies the conditions 

of the Lemma. I 
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Definition 3.3: If S is a connected k-scheme and f • F ' (S)  _~ Z,'(S) x F ' (S) ,  

we shall call its component in Z,'(S), which is an integer number, "the valuation 

of 1" -v(f)-. 
PROPOSITION 3.4: There exists a unique 2-coboundary "5". F x F --+ Gm that 

satisfies the conditions: 

• "5(f,g-g') ---- ~'(f,g). ~(f,g') 
• "5(f,g) = 1 i f v ( f )  --- 0 
• ~(f,-f) = (-l)v(f) 

for f ,  g, g' 6 F" (S), S being a connected k-scheme. 

Proof: Since ~ is a 2-coboundary and F is commutative, one has that  ~(f, g) = 

~(g, f) .  Hence ~'(f. f ' ,  g) = ~(f, g) .  ~(f ' ,  g) and, if v(g) = 0, then ~(f, g) = 1. 
Moreover, since F is a locally connected scheme, ~is determined by considering 

S-valued points, with S a connected k-scheme. Let us now consider 

f,g • F'(S) = Z:(S) × r'(s). 

If we set f = [a, fo] and g = [/~, go] with V(fo) = v(go) = 0, one has that 

~5(f,g) = ~([a, 1o], [fl, go]) = ~([a, 1], [/5, 1]) 

and thus there exists a 2-coboundary cl: Z ,  x Z ,  -+ Gm such that 

~([a, fo], [fl, go]) = cl (a,/~). 

Finally, bearing in mind that  

~'([a, fo], [a, - fo] )  -- ( -1 )  (~ = cl(a,  a), 

it follows from the above Lemma that Cl is unique and its value is 

CI(OZ,/~ ) __-- (--1)  a'B __-- "~(f,g). m 

THEOREM 3.5: There exists a unique element ( , )k in the cohomology class 
2 [eT./(~) ] • Hreg(F, Gm ) satisfying t he  conditions: 

• (f,g'g')k = (f,g)k" (f,g')k 

• ( f ,g)k  : eT~(p)(f,g) ifv(f) = 0 

• (f,-f)k = i 

for f , g ,g '  6 F°(S), with S a connected k-scheme. This element is the Contou- 

Carrbre symbol associated with the field k. 

Proof: The equality en(p) (f, g .  g') = eu(p) (f, g) • en(p) (f,  g') follows from the 
properties of the commutator.  
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Moreover, if f = (a,A, fl,f2) with a E Z, A E G~n(S ), fl  E I~_(S) and 

f2 E F*__(S), hence - f  = (a , -A,  fl, f2) and then 

en(r)(f '  - f )  = f 2 )  = 

Thus, if ~" is the 2-coboundary computed in Proposition 3.4, the 2-cocycle 

= • 

is the only one that satisfies the conditions of the Theorem. | 

Remark 3.6: The generalization of the Contou-Carr~re symbol that we have 

defined is determined by a cohomology class 

e g & g ( r ,  G m ) ,  

and by three conditions which imply the uniqueness of a representant. These 

conditions are not strange in the theory of symbols because the first and the 

second appear in Serre's definition of the multiplieative local symbol [14] and 

the third is one of the properties verified by Steinberg symbols [10]. 

This symbol determines a central extension of F by Gm that coincides with 
the extension induced by the commutator eT/(~ ). Let us denote this extension 

by Fe~(~). 

Recently, A. Beilinson, S. Bloch and H. Esnault [6] have defined the Contou- 

Carr~re symbol as the commutator pairing in a Heisenberg super extension. 

Indeed, keeping the notations of [6], putting F = k((t)) and setting 

F ~ = Z x G ~  x W x @ ,  

we can assign a Heisenberg super extension of F x to any 1-dimensional vector 

space L over the local field F. Namely, considering L as a Tate vector space 

over the base field k, it yields the Tate super extension of the group Gl(L) of 

continuous k-automorphisms of L, and the BBE Heisenberg super extension is 

its pull-back to the subgroup of F-homotheties F ~ C Gl(L). Since the con- 

struction is natural, the isomorphism class of the extension does not depend on 

the choice of L. Thus, the commutator pairing is equal to the Contou-Carr~re 

symbol for any L. Hence, if we take for L a square root of the line of 1-forms, 

then the corresponding Heisenberg extension F x~ naturally acquires a symmet- 
ric structure. 
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Thus, bearing in mind the characterization of symmetric Heisenberg exten- 

sions offered in [5], we have that F % ~  coincides with the Baer product of two 

copies of F x~. 

COROLLARY 3.7: I f  S is a connected k-scheme and u , v  E F°(S) with 

l oo h oo 

: a~ II(1- a_~z-~) II(1- a~z~) a n d  v = ~ z  m II(1- b_~z-J) 1](1- bjzJ), 
i=1 i=1 j = l  j----1 

a-i ,  b_j being nilpotent dements  of H°(S,  Os),  one has that 

z~m " YIi=I°° i-i)=1 (1 _ aiJ/(i'J)b_ji/(i'J) ) (i,j) 
( ~ , v ) k  = ( - 1 )  n'~ 

• o o  i j i = l ( l _  . _- "~ l-Ij=l t b~/(i,j) aj/ffj))(i,i) ' 

where, l~nitely, many  of  the terms appearing in the products differ from 1. 

Proof: Since ~d(u,v) = ( -1 )  n'm, the claim is directly deduced from the 

definition of the Heisenberg group and the value of the respective dual 

morphisms. | 

COROLLARY 3.8: Let us assume that char(k) = 0 together with the hypothesis 

of  Corollary 3.7. Hence 

A m. exp(~i>0(6i(u  ) • 6_i(v)/i))  
(u ,  v )k  = ( - 1 )  ~ ~  

#n .  exp(Ei>o(5_i(u  ) . 5i(v) / i ) ) '  

where 5,(])  = res(z s • -~). This formula is equal to the expression obtained by 
C. Contou-Carrgre in [7]. 

= - ~ 1 - , Proof'. If we set Ul 1--[jh=l(1 a_iz  -~) and u2 = I-[i=1 ( aiz ~) for i > 0, 

we have that hi(u) = hi(u1) and 5_i(u) = 5_i(u2). And the same applies to v. 
h oo Then, writing Vl = I-[j=1 (1 - b _ j z  - j )  a n d  v2 = I-[j=1 (1 - b j z J ) ,  f r o m  Proposition 

2.4 we have that 

x~(m) " X~I (v2) A m.  exp(E~>0 (6i(u1). 5_i(v2)/i)) 

x , ( n )  " Xvl (us) #n .  exp(}-~'/>o(6_i(u2) . 6i(v1)/i))" 
en(~) (u, v) = 

Hence, 
A m.  exp(Ei>0(hi(u ) • 5_i(v)/i))  | 

(u, V)k = (--1) n'm #n .  exp(Ei>0(5_i(u  ) . 5i(v)/i))" 

Let p E C be a non-singular and rational point on a connected curve over 

Speck. Since (~)p)~ _~ F°(Spec k), one has that  Eb  ~ F°(Spec k). 
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COROLLARY 3.9: In an arbitrary characteristic, considering rational points, if 

f ,  g E E~ one has that 

(f ,g)k = (f,g)p = ( -1)  n 'mfn  -~--~(p) with n = vp(g) and m = vv(f) ,  

which is the expression of the multiplicative local symbol defined by J. P. Serre. 

Proof The claim results directly from F'_(Speck) = {1}. 1 

Remark 3.10: We should note that the above definition of the multiplicative 

local symbol, as a map induced between the Spec k-valued points of a morphism 

of schemes, is "local", while Serre's definition of this symbol contains, among 

the conditions that imply its uniqueness, the reciprocity law Ylpec(f,g)p = 1, 

which is not a local condition. 

Let us now consider a connected curve C over Spec k, and a non-singular 

point p E C such that k ~ k(p) is a finite and separable extension, k(p) 
being the residue class field of p. From the Theorem of Cohen we have that 

((9~)~ __ F°(Speck(p)), and hence E~ ~ F'(Speck(p)). 

COROLLARY 3.11: In an arbitrary characteristic, considering Spec k(p)-valued 

points, if  f ,  ~ E E~ one has that 

_ -. _- f v ~ ( ~ )  
(f,~)k = (f,~)~ = (-1)  vp(y) vP(g)~(/)(P) E k(p)*, 

which is the expression of the tame symbol defined by J. Milnor and associated 

with the discrete valuation v~ on the field E* c. 

2.B. GENERALIZATION OF THE CONTOU-CARRERE SYMBOL ASSOCIATED WITH 

A SEPARABLE EXTENSION k ¢-+ k(s). We shall now give a generalization of the 

Contou-Carr~re symbol associated with a separable extension k '-+ k(s). To do 

so, we shall first construct a formal group scheme, FK, from a deformation of 

the functor of points F" induced by a finite extension k ~ K. 

PROPOSITION 3.12: Let k ¢-+ K be a finite extension. One has that the functor 

F I ( S ) = G ~ ( S  x SpecK) 
Speck 

is representable in the category of k-schemes and its representant, which is a 

group scheme, will be denoted by (Gm)K. 

Proof: Let us consider K v = HOmk-mod.(K, k), which is a finite k-module. 
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If V(K) = Spec S'(K v) is the vector bundle associated with it, one has that 

V (K)  ° (S) = Homk- atg. (S" (K  v ), H ° (S, Os)) 

= Homk-,~od(K v, H°(S, Os) 

= Homk-mod(k, H°(S, Os) ® K) 
k 

= Homk-alg. (k[x], H°(S, Os) <9 K) 
k 

for each k-scheme S. 

Then, 
= G' (s x 

Speck 
SpecK) = H°(S, Os) ® K. 

k 

Hence, if P(K) is the principal bundle obtained as the complement of the 

0-section in V(K), we have that 

P(K) ' (S)  = (H°( S, Os) ® K)*  = F,(S), 
k 

from where we deduce that F1 is representable. | 

PROPOSITION 3.13: Let k ¢-+ K be a finite extension. One has that the functor 

F2(S)=F'+(S x SpecK) 
Speck 

is representable in the category of k-schemes. Its representant will be denoted 
by (F+)K and, by construction, is a group scheme. 

Proof: Let us consider the ring 

~) 
B~ = S ( K V ) e . ? . e S ( K  v) = S'((k e . . .  • k)®KV). 

k k k 

Arguing similarly to the above proposition, one has that: 

Homk-alg (Bn, H°(S, Os)) = Homk-alg (k[xl, . . . ,  Xn], H°(S, Os) ® K), 
k 

and hence 
(SpecBn)'(S)=(An) '(S × SpecK). 

Spec k 

Thus, we have that 

(F+)K = lim Spec Bn = Spec(li_m Bn), 
n n 

together with the corresponding group law. F2 is therefore representable. | 



52 F. PABLOS ROMO Isr. J. Math. 

PROPOSITION 3.14: Let k ¢-~ K be a finite extension. One has that the functor 

F3(S)=F'_(S x SpecK) 
Spec k 

is representable in the category of formal k-schemes. We shall denote by (F_)K 

its representant, which is a formal group scheme. 

Proof: If (An)K = Spec Bn is the scheme studied in the previous Proposition, 

we have a natural morphism of schemes A n ~ (A .n)K defined between the 

S-valued points as the inclusion 

O H°(S,  Os) ~-+ • H°(S, Os) ® K. 
n ~% k 

We thus have a natural ring morphism Bn ---+ k[xl,..., xn] and there exists a 
maximal ideal ~to C_ Bn such that ~t o • k[xl,..., Xn] ---- (Xl,..., Xn). 

Hence, 

kix,,... ,xn]/(xl,... ,xn) ,xn] ® 
B,~ 

and we deduce that 

Homk-alg(k[xl , . . . , Xn]/(Xl, . . . , Xn) n, H°(S,  0S)  ~k I~) 

= Homk-atg(k[Xl , . . . ,  xn] ® Bn/m~,  H°(S, Os) ® K) 
Bn k 

= HOmk-alg(Bn, H°(S, Os)) x HOmk-alg(Bn/m~, H°(S, Os) ~ K) 

Honlk-al9 (B,~ ,H°( S, Os ) ~ K) 

= Homk-a/g (Bn/m~, H°(S,  Os)). 

Thus, 

Spec(Bn/m~)°(S) 

= Homk-alg(k[xl,. . . ,  x n ] / ( x l , . . . ,  Xn) n, H°(S,  Os) Qk K) ,  

and introducing the corresponding structure of a Witt group scheme in (A n)K, 

we have that 

an z -n  + ' "  + alz  -1 + 1 where ] 
S p e c ( B n / ~ ) ' ( S )  = ai 6 H ° ( S , ( g s ) ® K  and ( a l , . . . , a n )  n = 0 ~ , 

k 

from where we deduce that the functor F3 is representable by the formal group 

scheme 

(F-)K = lim Spec(Bn/m~). | 
n 
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Let us now consider a finite and separable extension k '--+ k(s). We set 

Pk(s) = Z,  × Fk(s), where Fk(s) = (F+)k(s) × (Gm)k(s) × (F-)k(s), which is a 
locally connected scheme. Moreover, for each connected k-scheme S, one has 

that 
~ O  

Fk(s) (S) : (H°(S, (98) ® k(s)[[z]][z-1]) *, 
k 

and hence Fk(s) (Spec k) = (k(s)[[z]][z-1]) * = (k(s)[[z]])~o). 
If we denote Gk(s) = (Gm)k(s) × (F+)k(s) and Gk(~) = Z,  × (F-)k(~), from the 

natural inclusion of functors on groups 

Z:(S) ¢-+ (Z,)~(~)(S) : Z',(S x Speck(s)) 
Speck 

we have defined a morphism of schemes 

Xk(s): Gk(~) × Gk(~) --+ (G~)k(~) 

induced by the duality between the group schemes Gm > F+ and Z,  × F_. 

Let us now consider the norm morphism Nk(s)/k: (C~m)k(s) -+ Gm, which is 

defined between the S-valued points as 

Nk(s)/k: (Gm)'k(s)(S) 

.f ,  

where 

G- (s) 

det hi, 

hf: H°(S, Os) ® k(s) --+ H°(S, Os) ® k(s) 
k k 

is the homothety induced by 

f • (H°(S, O8) ~ k(s))* 

and det hf is computed from a basis of 

g° ( s ,  Os) ® k(s) 
k 

as a finite H°(S, Os)-module. 
Hence, we have a morphism of schemes )~: Gk(s) × Gk(s) > (~m defined by 

g) = g)). 

Our aim is now to define a group scheme associated with Fk(s) that will 

generalize the notion of the Heisenberg group scheme studied in the previ- 

ous subsection. To do this, we shall denote by 7-/(Fk(s)) the group scheme 

Gm X Gk(s) × Gk(s) defined from the operation 

(c~, f, g)- (~', f ' ,  g') = (~. c~'. X( f ,  g), f -  f ' ,  g. J )  
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for S-valued points, S being a k-scheme. 

Moreover, if e~q(r-~(~)): Fk(s) × Fk(s) )Gm is the commutator of the extension 

of groups induced by 7-/(Fk(s)), one has that 

, , (~k( s ) ( ] ' , ~ )  
7~(r-~(.,))[(f, g), ( f  ,g )] = Nk(s)/k \Xk(s)( f ,g ' )  )" 

2 N 
Since e~(r--~(~,)) determines an element of the group Hreg (Fk(s), Gin), we shall 

define a new generalization of the tame symbol similarly to the previous one. 

Let us denote deg(k(s)) = dimk k(s). 

LEMMA 3.15: There exists a unique 2-coboundary c: Z.  x Z .  -+ •m satisfying 

the conditions: 

• c(~, 9 + ~) = c(~, ~ ) .  c(~, ~) 
• c(a ,a)  = ( -1 )  ~'deg(k(s)) 

for a,/~, 7 E Z~(S), with S a connected k-scheme. 

Proof'. Analogously to the proof of Lemma 3.2, one has that 

c(~,/~) -- ( -1 )  c~'~'deg(k(s)) 

is the unique 2-coboundary that satisfies the conditions of the Lemma. II 

PROPOSITION 3.16: There exists a unique 2-coboundary 

N N 

F: Fk(~) x Fk(s) -+ Gm 

that satisfies the conditions: 

• "5(f,g. g') = ~'(f,g). ~'(f,g') 
• ~'(f,g) ---- 1 i f v ( f )  = 0 
• ~ ( f , - - f )  ----- (_l)v(f) 'deg(k(s)) 

for f ,  g, g~ E Fa(s) (S), S being a connected k-scheme. 

Proof: The proof is similar to the proof of Proposition 3.4. | 

THEOREM 3.17: There exists a unique element ( , )k(s)  in the cohomology class 
2 [eT~(F~(.,)) ] E Hreg(Fk(s) ,Gm ) satisfying the  condi t ions 

• (f ,  g" g')k(s) ---- (f ,  g)k(s)" (f ,  g')k(s) 
• (f,g)k(~) = e~(r '~ ( , , , ) ( f , g )  i f v ( f )  = o 

• ( f , - f ) k ( s )  ---- 1 
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for f ,g, gt 6 Fk(8) (S), with S a connected k-scheme. This element is a gener- 
alization of the Contou-Carr~re symbol associated with the separable extension 

k k(s). 

Proof: Arguing identically to the proof of Theorem 3.5, one sees that 

( f , g ) k ( 8 )  =  (Lg) • 

is the only element that  satisfies the conditions of the Theorem. | 

COROLLARY 3.18: If S is a connected k-scheme and u,v 6 Fk(s) (S) with 

l oo h oo 
u : Az ~ H ( 1 - a _ i z - i ) H ( 1 -  aizi) and v : #z ~ H (1-b-Yz-J)  H (1-bYZJ)' 

i=1 i=1 j = l  j = l  

a-i, b_j being nilpotent elements of H°(S, Os) ®k k(s), one has that 

o~ h 1 j/(i,j) i/(i,j) (i,j) 
A'~YL=I I-I j=l( - ai b_j ) ), 

(--1)n'm'deg(k(S))Nk(s)/k ",( #n Hj°°__ 1 YI/i=l (1 b/(i , j )  aJ/(i,J))(i,j) 

where, finitely, many of the terms appearing in the products differ from I. 

Proof: The result is immediately deduced from the value of the generalized 

symbol showed in Corollary 3.7. | 

COROLLARY 3.19: If we add the condition char(k) = 0 to the hypothesis of the 
previous corollary, we have that 

(u, v)k(s) = (--1)n'm'deg(k(s))Nk(s)/k (--~ : exp(Ei>o(5_~(u) " 5,(v) li) ) )' 
where (~(f) = res(z s .  -~). 

Proof." The statement is a direct consequence of Corollary 3.8 | 

Remark 3.20: Let C be an irreducible and non-singular curve over a perfect 

field k and let p e C be a closed point on it. If k(p) is the residue class field of p, 

one has that k ¢-~ k(p) is a separable extension and, from the Theorem of Cohen, 
m O  

one deduces that (gp ~_ k(p)[[z]]. Then, E~ ~ Fk(p) (Speck). Accordingly, if 

f ,  g 6 E~,, one has that  

: fv.(g) \ (1, g)a.) = ( -  1) "p(f)'v~(")'d~g(k(p)) Nk(p)/k ~ g~(f)(P)), 

which coincides with the expression obtained in [12]. 
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4. Rec ip roc i ty  law 

The goal of this final section is to prove a reciprocity law for the above 

generalized Contou-Carr~re symbol in terms of morphisms of schemes. 

Let us again consider an irreducible, complete and non-singular curve C over 

a perfect field k, whose function field is Ec. 

If p is a closed point of C, retaining the above notations, from the Theorem 

of Cohen one has that (~p ~ k(p)[[z]] and E~ ~ Fk(p) (Speck), where Fk(p) is 

the k-formal scheme associated with separable extension k ~+ k(p) defined in 

subsection 3.B. Analogously, if A is a k-algebra, it is clear that (Ec ®k A)* 
~ e  

Fk(p) (Spec A) for each p e C. 

Let us now consider the k-formal scheme 

pEO 

where Gk(p) and -Gk(p) are the k-schemes Gk(p) = (Gm)k(p) × (F+)k(p) and 

Gk(p) = Z,  × (F-)k(p). 
For each connected k-scheme S, we have defined a morphism of groups 

rk(p) (S)x rk(p) 
\ p E C  ~ \ p E C  z 

({M, {9,}), II(h,g,)k(,), 
p 

where (fp, gp)k(p) = 1 for almost all closed points p E C. 

THEOREM 4.1 (Reciprocity Law for the Generalized Contou-Carr~re Symbol): 

For each artinian local finite k-algebra A, the natural morphism of groups 

(Ec ®k A)* x (Ec ®k A)* ~-+ •k(p) (SpecA) x ['k(p) (SpecA) 
\ p E C  ~ \ p E C  / 

takes values on Ker (~Spec m. 

Proof: Retain the notations of [1] and let us consider an artinian local finite 

k-algebra A. If p is a closed point of C and we set 

Sp = (~p ®k d ~_ (A ®k k(p))[[z]], 

and Kp = ((~p)o ®k A ~- (A ®k k(p))((z)) (with ((~p)o the field of fractions of 

Op), it follows from [1] (Section 3) that we have a central extension of groups 

1 --+ A* ) ~h'p GKv Bp ~' Bp --+ 1, 
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which induces by restriction another central extension 

1 -+ A* --+ (Ec ®k A)* > (Ec ®k A)* --+ 1, 

whose commutator is denoted by {S, g}Bhl p, for all f, g E (Ec ®k A)*. 

Moreover, when a, b E A ®k k(p) and b is a nilpotent element, from the 

computations conducted in [1] one has that 

{1 - az i, 1 - bz -J} l~  = detA(1 - az i I (d  ®k k(P))[[z]]/( zj - b)) 

= detA(detA®kk@) (1 -- az i I (A ®k k(P))[[z]]/(z j - b)) I A ®k k(p)) 

---- Nk(p)lk ((1 -- a j/(i'j) bil(i'J)) (i'j)), 

and thus if we consider f , g  E (Ec ®k A)* such that 

and 

- i  oo 
S = = (1 - - • a.-a-i~ 1 

a-i ,  b_j being nilpotent elements of A ®k k(p), we deduce that 

~r [ lli----ll lj--~l ~ ai b_j ) t J  J ~S~,gtBKP ----XVk(p)/k "~Vp(g)l-[°° 1-1h ( 1 -  j/(i,j) il(i,j) (i,j) 

].t l [ j=111i=1  (. 

Hence (f, g)k(p) = (--1) v'(f)'vp(g)'deg(k(p)) { f ,  9 } 2 "  

Finally, bearing in mind that 

• 1 K p  ma,, ,  f = vp(I)" deg(k(p)) for all f E (No ®k A)*, 

with similar arguments to "Fate's proof of the residue theorem [15], one sees that 

I { f '  g }BA~) ~--- (__ X)PE~c vp(f).Vp(g).deg(k(p)) 

pEC 

and we conclude t h a t  r lpev( f ,g)k(p)  -- 1. I 

Remark 4.2: The above proof of the reciprocity law is based on the results of 

[1], where A must be an artinian local finite k-algebra. From the statements 

proved in [6] (Section 3.4), one would think that this formula remains true for a 

commutative k-algebra A (with Ec ®k A replaced by the ring of functions on the 

complement to a relative divisor). We are planning to study this generalization 

in depth in a future work, with the aim of understanding the results of [6] in 

terms of commensurable A-submodules. 

9 : S ll _l (i - b_jz -d) H/~__I (i - bjzJ), 
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Remark 4.3 (Tame and Hilbert Reciprocity Laws): If C satisfies the hypothesis 

of the theorem, by taking rational points in the above expression we can recover 

the reciprocity law of the tame symbol of an algebraic curve [12]: 

H (--1)v"(f)'vP(g)'deg(k(P))Nk(p)/k [ f~.(a)(p)) = 1. 
pEC \gyp(f) 

Similarly, if C is an irreducible, complete and non-singular curve over a finite 

perfect field that contains the mth roots of unity and ~k = q, the reciprocity 

law of the Hilbert norm residue symbol 

H Nk(p)/k( (-1)' '(f>'vA')" gV,(f)fvAg> (p))(q-,)/m = 1 
pEC 

can also be deduced from the statement of the theorem. 

Remark 4.4 (Generalized Residue Theorem): If C is again an irreducible, com- 
plete and non-singular curve over a perfect field, p E C is a closed point, 

and f , g  E E* c ~ k(p)((z))* _~ (Op)o, by considering the artinian local ring 

A = k[c]/~ 3, one has that 

(1 - of, 1 - eg)k(p) = Nk(p)/k(1 -- ~2 resp(gdf)) 

= 1 - e ~ Trk(p)/k(resp(gdf) ). 

Hence, from the above reciprocity law, we can recover the expression of the 

generalized residue theorem over a perfect field: 

Z Trk(P)/k(resp(gdf)) = O. 
pEC 

Remark 4.5 (Generalized Witt Reciprocity Law): With the notations of [1] 

(Section 4.3), if k is a perfect field and k ¢-~ k(s) is a finite extension, taking 

the artinian local ring A = k[e]/e g+l and bearing in mind that W_<g(k) ~-- 

(}~ (Spec A) and W ~ N  (k(s)((t))) ~_ Pk(s)'(Spec A), we can define the pairing 

resWN( ", ")k(s): F~(s)'(SP ec k) x W<N(k(s)((t))) -+ W<_N (k) 

by the rule 

N x N / 

( f ,  H (1 - x , e i ) )  -- H ( 1 -  ei(resWg(f,x)k,s)),) m o d  (~N+I)  

k i=1 / k(s) i=1 

where (., ")k(s) is the generalization of the Contou-Carr~re symbol associated 

with the separable extension k ¢---> k(s). 
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Thus, if C satisfies the hypothesis of the theorem, we deduce from the above 

reciprocity law that  

E resWN(Sp'Xp)k(P) = 0 
pCG 

• N for all f E E c and x = (xi)i_-i E W_<N(Ec), and where the addition is to 

be performed in the group W<N (k). When k is an algebraically closed field of 

characteristic p and N = pn-1, according to the considerations made in [1], it 

is possible to recover the Wit t  reciprocity law [16] from this expression. Hence, 

the last formula is somehow a generalization of the Wit t  Reciprocity Law. 
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